What is the difference between Carbohydrate deficient transferrin (CDT) and Phosphatidylethanol (PEth)?

Lolita Tsanaclis

Lolita Tsanaclis

on Nov 30, 2021

Blood testing is often used in conjunction with hair testing when assessing harmful or problem drinking or alcohol abuse. The results can be used to support life-changing decisions, such as child custody cases.

Carbohydrate-deficient transferrin (CDT) is an alcohol biomarker test and one of the most used biomarkers for monitoring alcohol use. A newer blood test, measures Phosphatidylethanol (PEth) a very specific alcohol biomarker, for the detection of current regular alcohol consumption. 

At Cansford, we recommend the use of PEth testing as a more sensitive marker than the more commonly used CDT to accurately demonstrate alcohol use within 28 days of the sample being taken. The other advantages of PEth testing is that it is possible to take the sample using dry blood spots (DBS).

Here, we look at the detail behind that recommendation and the differences between the two markers.

CDT vs PEth


1. Aboutara, N., Jungen, H., Szewczyk, A., Sterneck, M., Müller, A. and Iwersen‐Bergmann, S., 2021. Analysis of six different homologues of phosphatidylethanol from dried blood spots using liquid chromatography–tandem mass spectrometry. Drug Testing and Analysis, 13(1), pp.140-147.
2. Anton, R.F. and Moak, D.H., 1994. Carbohydrate‐deficient transferrin and γ‐glutamyltransferase as markers of heavy alcohol consumption: Gender differences. Alcoholism: Clinical and Experimental Research, 18(3), pp.747-754.
3. Arndt, T., 2001. Carbohydrate-deficient transferrin as a marker of chronic alcohol abuse: a critical review of preanalysis, analysis, and interpretation. Clinical chemistry, 47(1), pp.13-27.
4. Bertholet, N., Winter, M.R., Cheng, D.M., Samet, J.H. and Saitz, R., 2014. How accurate are blood (or breath) tests for identifying self-reported heavy drinking among people with alcohol dependence? Alcohol and alcoholism, 49(4), pp.423-429.
5. Bortolotti, F., Raffaelli, R., Di Simone, N., Semprebon, M., Mirandola, M., Simonetto, C., De Marchi, F., Trevisan, M.T., Carli, G., Dorizzi, R.M. and Scambia, G., 2020. CDT reference values for monitoring chronic alcohol abuse in pregnancy. Clinica Chimica Acta, 507, pp.156-160.
6. Fagan, K.J., Irvine, K.M., McWhinney, B.C., Fletcher, L.M., Horsfall, L.U., Johnson, L., O’Rourke, P., Martin, J., Scott, I., Pretorius, C.J. and Ungerer, J.P., 2014. Diagnostic sensitivity of carbohydrate deficient transferrin in heavy drinkers. BMC gastroenterology, 14(1), pp.1-6.
7. Golka, K. and Wiese, A., 2004. Carbohydrate-deficient transferrin (CDT)—a biomarker for long-term alcohol consumption. Journal of Toxicology and Environmental Health, Part B, 7(4), pp.319-337.
8. Helander, A., Böttcher, M., Dahmen, N. and Beck, O., 2019. Elimination characteristics of the alcohol biomarker phosphatidylethanol (PEth) in blood during alcohol detoxification. Alcohol and Alcoholism, 54(3), pp.251-257.
9. Helander, A., Hermansson, U. and Beck, O., 2019. Dose–response characteristics of the alcohol biomarker phosphatidylethanol (PEth)—a study of outpatients in treatment for reduced drinking. Alcohol and Alcoholism, 54(6), pp.567-573.
10. Helander, A., Péter, O. and Zheng, Y., 2012. Monitoring of the alcohol biomarkers PEth, CDT and EtG/EtS in an outpatient treatment setting. Alcohol and alcoholism, 47(5), pp.552-557.
11. Isaksson, A., Walther, L., Hansson, T., Andersson, A., Stenton, J. and Blomgren, A., 2018. High-throughput LC-MS/Ms method for determination of the alcohol use biomarker phosphatidylethanol in clinical samples by use of a simple automated extraction procedure—preanalytical and analytical conditions. The Journal of Applied Laboratory Medicine, 2(6), pp.880-892.
12. Jones, J., Jones, M., Plate, C. and Lewis, D., 2011. The detection of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol in human dried blood spots. Analytical Methods, 3(5), pp.1101-1106.
13. Kenan, N., Larsson, A., Axelsson, O. and Helander, A., 2011. Changes in transferrin glycosylation during pregnancy may lead to false-positive carbohydrate-deficient transferrin (CDT) results in testing for riskful alcohol consumption. Clinica Chimica Acta, 412(1-2), pp.129-133.
14. Madhubala, V., Subhashree, A.R. and Shanthi, B., 2013. Serum carbohydrate deficient transferrin as a sensitive marker in diagnosing alcohol abuse: a case–control study. Journal of clinical and diagnostic research: JCDR, 7(2), p.197.
15. Pronicka, E., Adamowicz, M., Kowalik, A., Płoski, R., Radomyska, B., Rogaszewska, M., Rokicki, D. and Sykut-Cegielska, J., 2007. Elevated carbohydrate-deficient transferrin (CDT) and its normalization on dietary treatment as a useful biochemical test for hereditary fructose intolerance and galactosemia. Pediatric research, 62(1), pp.101-105.
16. Schröck, A., Thierauf, A., Wurst, F.M., Thon, N. and Weinmann, W., 2014. Progress in monitoring alcohol consumption and alcohol abuse by phosphatidylethanol. Bioanalysis, 6(17), pp.2285-2294.
17. Schröck, A., Thierauf-Emberger, A., Schürch, S. and Weinmann, W., 2017. Phosphatidylethanol (PEth) detected in blood for 3 to 12 days after single consumption of alcohol—a drinking study with 16 volunteers. International journal of legal medicine, 131(1), pp.153-160.
18. Stibler, H., 1991. Carbohydrate-deficient transferrin in serum: a new marker of potentially harmful alcohol consumption reviewed. Clin Chem, 37(12), pp.2029-2037.
19. Tsanaclis, L., Davies, M., Bevan, S., Nutt, J., Bagley, K. and Wicks, J., 2021. Testing venous carbohydrate‐deficient transferrin or capillary phosphatidylethanol with concurrent ethyl glucuronide and ethyl palmitate hair tests to assess historical and recent alcohol use. Drug Testing and Analysis, 13(1), pp.203-207.
20. Ulwelling, W. and Smith, K., 2018. The PEth blood test in the security environment: what it is; why it is important; and interpretative guidelines. Journal of forensic sciences, 63(6), pp.1634-1640.
21. Viel, G., Boscolo-Berto, R., Cecchetto, G., Fais, P., Nalesso, A. and Ferrara, S.D., 2012. Phosphatidylethanol in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. International journal of molecular sciences, 13(11), pp.14788-14812.
22. Walther, L., de Bejczy, A., Löf, E., Hansson, T., Andersson, A., Guterstam, J., Hammarberg, A., Asanovska, G., Franck, J., Söderpalm, B. and Isaksson, A., 2015. Phosphatidylethanol is superior to carbohydrate‐deficient transferrin and γ‐glutamyltransferase as an alcohol marker and is a reliable estimate of alcohol consumption level. Alcoholism: Clinical and Experimental Research, 39(11), pp.2200-2208.
23. Wurst, F.M., Thon, N., Aradottir, S., Hartmann, S., Wiesbeck, G.A., Lesch, O., Skala, K., Wolfersdorf, M., Weinmann, W. and Alling, C., 2010. Phosphatidylethanol: normalization during detoxification, gender aspects and correlation with other biomarkers and self-reports. Addiction biology.
24. Wurst, F.M., Thon, N., Yegles, M., Schrück, A., Preuss, U.W. and Weinmann, W., 2015. Ethanol metabolites: their role in the assessment of alcohol intake. Alcoholism: Clinical and Experimental Research, 39(11), pp.2060-2072.

Lolita Tsanaclis

Lolita Tsanaclis

Dr. Lolita Tsanaclis, Chief Scientific Officer of Cansford Laboratories Limited, has been developing methods for the analysis of drugs in hair since 1993. She has been involved in drug testing using hair, blood and oral fluid samples for medico-legal and workplace sectors for over three decades. Dr Tsanaclis is published extensively as author and as co-author in highly regarded peer-reviewed publications and scientific presentations.

Subscribe to Email Updates

Recent Posts

Exclusive Family Law blog: Court of Appeal gives guidance on hair strand testing
Please read: We've updated our Expert Witness Statements as directed and instructed by you
Spreading the word about Family Drug and Alcohol Courts (‘FDACs’)
Debunking the myth about sensitivity in drug and alcohol testing
Exclusive for Family Law and Social Work Professionals: The end of court-based dispute resolution?
Exclusive: Celebrating 40 years of DNA 'fingerprinting' in family law cases
Discover the ‘secret sauce’ in Cansford’s industry-leading efficiency